期刊论文详细信息
Sensors
Compact Antenna in 3D Configuration for Rectenna Wireless Power Transmission Applications
Alexandru Takacs1  Alassane Sidibe1  Daniela Dragomirescu1  Gaël Loubet1 
[1] Laboratoire d’Analyse et d’Architecture des Systèmes du Centre National de la Recherche Scientifique (LAAS-CNRS), Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National des Sciences Appliqués de Toulouse (INSA), Université Paul Sabatier, Toulouse III (UPS), 31400 Toulouse, France;
关键词: compact antenna;    wireless power transmission (WPT);    energy harvesting;    rectenna;    wireless sensors;   
DOI  :  10.3390/s21093193
来源: DOAJ
【 摘 要 】

This work presents methods for miniaturizing and characterizing a modified dipole antenna dedicated to the implementation of wireless power transmission systems. The antenna size should respect the planar dimensions of 60 mm × 30 mm to be integrated with small IoT devices such as a Bluetooth Lower Energy Sensing Node. The provided design is based on a folded short-circuited dipole antenna, also named a T-match antenna. Faced with the difficulty of reducing the physical dimensions of the antenna, we propose a 3D configuration by adding vertical metallic arms on the edges of the antenna. The adopted 3D design has an overall size of 56 mm × 32 mm × 10 mm at 868 MHz. Three antenna-feeding techniques were evaluated to characterize this antenna. They consist of soldering a U.FL connector on the input port; vertically connecting a tapered balun to the antenna; and integrating a microstrip transition to the layer of the antenna. The experimental results of the selected feeding techniques show good agreements and the antenna has a maximum gain of +1.54 dBi in the elevation plane (E-plane). In addition, a final modification was operated to the designed antenna to have a more compact structure with a size of 40 mm × 30 mm × 10 mm at 868 MHz. Such modification reduces the radiation surface of the antenna and so the antenna gain and bandwidth. This antenna can achieve a maximum gain of +1.1 dBi in the E-plane. The two antennas proposed in this paper were then associated with a rectifier to perform energy harvesting for powering Bluetooth Low Energy wireless sensors. The measured RF-DC (radiofrequency to direct current) conversion efficiency is 73.88% (first design) and 60.21% (second design) with an illuminating power density of 3.1 µW/cm2 at 868 MHz with a 10 kΩ load resistor.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次