期刊论文详细信息
International Journal of Molecular Sciences
Genetically Encoded Photosensitizers as Light-Triggered Antimicrobial Agents
NoraLisa Bitzenhofer1  Fabienne Hilgers1  Karl-Erich Jaeger1  Thomas Drepper1  Yannic Ackermann1  Alina Burmeister2  Alexander Grünberger2 
[1] Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany;Multiscale Bioengineering, Bielefeld University, D-33501 Bielefeld, Germany;
关键词: photosensitizer (PS);    light-oxygen-voltage (LOV) proteins;    antimicrobial photodynamic inactivation (aPDI);    green fluorescent protein (GFP);    flavin-binding fluorescent protein (FbFP);    optogenetics;    extracellular phototoxicity;    antibiotics;   
DOI  :  10.3390/ijms20184608
来源: DOAJ
【 摘 要 】

Diseases caused by multi-drug resistant pathogens have become a global concern. Therefore, new approaches suitable for treating these bacteria are urgently needed. In this study, we analyzed genetically encoded photosensitizers (PS) related to the green fluorescent protein (GFP) or light-oxygen-voltage (LOV) photoreceptors for their exogenous applicability as light-triggered antimicrobial agents. Depending on their specific photophysical properties and photochemistry, these PSs can produce different toxic ROS (reactive oxygen species) such as O2•− and H2O2 via type-I, as well as 1O2 via type-II reaction in response to light. By using cell viability assays and microfluidics, we could demonstrate differences in the intracellular and extracellular phototoxicity of the applied PS. While intracellular expression and exogenous supply of GFP-related PSs resulted in a slow inactivation of E. coli and pathogenic Gram-negative and Gram-positive bacteria, illumination of LOV-based PSs such as the singlet oxygen photosensitizing protein SOPP3 resulted in a fast and homogeneous killing of these microbes. Furthermore, our data indicate that the ROS type and yield as well as the localization of the applied PS protein can strongly influence the antibacterial spectrum and efficacy. These findings open up new opportunities for photodynamic inactivation of pathogenic bacteria.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次