期刊论文详细信息
Nanophotonics
Coupling light and sound: giant nonlinearities from oscillating bubbles and droplets
Greentree Andrew D.1  Maksymov Ivan S.2 
[1] Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia;Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia;
关键词: photonics;    plasmonics;    nonlinear optics;    nonlinear acoustics;    photoacoustics;   
DOI  :  10.1515/nanoph-2018-0195
来源: DOAJ
【 摘 要 】

Nonlinear optical processes are vital for fields including telecommunications, signal processing, data storage, spectroscopy, sensing and imaging. As an independent research area, nonlinear optics began with the invention of the laser, because practical sources of intense light needed to generate optical nonlinearities were not previously available. However, the high power requirements of many nonlinear optical systems limit their use, especially in portable or medical applications, and so there is a push to develop new materials and resonant structures capable of producing nonlinear optical phenomena with low-power light emitted by inexpensive and compact sources. Acoustic nonlinearities, especially giant acoustic nonlinear phenomena in gas bubbles and liquid droplets, are much stronger than their optical counterparts. Here, we suggest employing acoustic nonlinearities to generate new optical frequencies, thereby effectively reproducing nonlinear optical processes without the need for laser light. We critically survey the current literature dedicated to the interaction of light with nonlinear acoustic waves and highly nonlinear oscillations of gas bubbles and liquid droplets. We show that the conversion of acoustic nonlinearities into optical signals is possible with low-cost incoherent light sources such as light-emitting diodes, which would usher new classes of low-power photonic devices that are more affordable for remote communities and developing nations, or where there are demanding requirements on size, weight and power.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:8次