期刊论文详细信息
Metals
Thermo-Viscoplastic Behavior of Ni-Based Superalloy Haynes 282 and Its Application to Machining Simulation
José Díaz-Álvarez1  María Henar Miguelez2  José Luis Cantero2  Marcos Rodríguez-Millán2  Alexis Rusinek3  Richard Bernier3 
[1] Department of Aerospace Engineering, University Carlos III of Madrid, 28911 Leganés, Madrid, Spain;Department of Mechanical Engineering, University Carlos III of Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain;Laboratory of Microstructure Studies and Mechanics of Materials (LEM3), University of Lorraine, UMR-CNRS 7239, 7 rue Félix Savart, 57073 Metz, France;
关键词: Haynes 282 alloy;    dynamic behavior;    high strain rate;    cutting model;   
DOI  :  10.3390/met7120561
来源: DOAJ
【 摘 要 】

Ni-based superalloys are extensively used in high-responsibility applications in components of aerospace engines and gas turbines with high temperature service lives. The wrought, γ’-strengthened superalloy Haynes 282 has been recently developed for applications similar to other common superalloys, such as Waspaloy or Inconel 718, with improved creep behavior, thermal stability, and fabrication ability. Despite the potential of Haynes 282, there are still important gaps in the knowledge of the mechanical behavior of this alloy. In fact, it was not possible to find information concerning the mechanical behavior of the alloy under impulsive loading. This paper focuses on the mechanical characterization of the Haynes 282 at strain rates ranging from 0.1 to 2800 s−1 and high temperatures ranging from 293 to 523 K using Hopkinson bar compression tests. The experimental results from the thermo-mechanical characterization allowed for calibration of the Johnson–Cook model widely used in modeling metallic alloy’s responses under dynamic loading. Moreover, the behavior of Haynes 282 was compared to that reported for Inconel 718, and the results were used to successfully model the orthogonal cutting of Haynes 282, being a typical case of dynamic loading requiring previous characterization of the alloy.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次