Arthroplasty | |
Development and internal validation of machine learning algorithms to predict patient satisfaction after total hip arthroplasty | |
Ming Han Lincoln Liow1  Hee Nee Pang1  Ngai Nung Lo1  Seng Jin Yeo1  Jerry Yongqiang Chen1  Siyuan Zhang2  | |
[1] Department of Orthopaedic Surgery, Singapore General Hospital;Yong Loo Lin School of Medicine, National University of Singapore; | |
关键词: Machine learning; Artificial intelligence; Total hip arthroplasty; Satisfaction; Patient-reported outcome measures; | |
DOI : 10.1186/s42836-021-00087-3 | |
来源: DOAJ |
【 摘 要 】
Abstract Background Patient satisfaction is a unique and important measure of success after total hip arthroplasty (THA). Our study aimed to evaluate the use of machine learning (ML) algorithms to predict patient satisfaction after THA. Methods Prospectively collected data of 1508 primary THAs performed between 2006 and 2018 were extracted from our joint replacement registry and split into training (80%) and test (20%) sets. Supervised ML algorithms (Random Forest, Extreme Gradient Boosting, Support Vector Machines, Logistic LASSO) were developed with the training set, using patient demographics, comorbidities and preoperative patient reported outcome measures (PROMs) (Short Form-36 [SF-36], physical component summary [PCS] and mental component summary [MCS], Western Ontario and McMaster’s Universities Osteoarthritis Index [WOMAC] and Oxford Hip Score [OHS]) to predict patient satisfaction at 2 years postoperatively. Predictive performance was evaluated using the independent test set. Results Preoperative models demonstrated fair discriminative ability in predicting patient satisfaction, with the LASSO model achieving a maximum AUC of 0.76. Permutation importance revealed that the most important predictors of dissatisfaction were (1) patient’s age, (2) preoperative WOMAC, (3) number of comorbidities, (4) preoperative MCS, (5) previous lumbar spine surgery, and (6) low BMI (< 18.5). Conclusion Machine learning algorithms demonstrated fair discriminative ability in predicting patient satisfaction after THA. We have identified modifiable and non-modifiable predictors of postoperative satisfaction which could enhance preoperative counselling and improve health optimization prior to THA.
【 授权许可】
Unknown