期刊论文详细信息
Crop Journal
Long-term inorganic plus organic fertilization increases yield and yield stability of winter wheat
Weijian Zhang1  Aixing Deng2  Chengfu Cao3  Huan Chen4  Taiming Yang5  Chengyan Zheng5  Fu Chen6  Wei Li6  Yuqiang Qiao6 
[1]Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
[2]Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
[3]Anhui Center of Agricultural Meteorology, Hefei 230031, Anhui, China
[4]College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
[5]Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui, China
[6]Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
DOI  :  
来源: DOAJ
【 摘 要 】
An understanding of wheat yield and yield stability response to fertilization is important for sustainable wheat production. A 36-year long-term fertilization experiment was employed to evaluate the yield and yield stability of winter wheat. Five fertilization regimes were compared, including (1) CK, no fertilizer; (2) NPK, inorganic fertilizer only; (3) O, organic fertilizer only; (4) NPKO, 50% of NPK plus 50% of O, and (5) HNPKO, 80% of NPK plus 80% of O. The greatest yield increase was recorded in HNPKO, followed by NPKO, with O producing the lowest mean yield increase. Over the 36 years, the rate of wheat yield increase in fertilized plots ranged from 95.31 kg ha−1 year−1 in the HNPKO to 138.65 kg ha−1 year−1 in the O. Yield stability analysis using the additive main effects and multiplicative interactions (AMMI) method assigned 62.3%, 26.3%, and 11.4% of sums of squares to fertilization effect, environmental effect, and fertilization × environment interaction effect, respectively. The combination of inorganic and organic fertilization (NPKO and HNPKO) appeared to produce more stable yields than O or NPK, with lower coefficients of variation and AMMI stability value. However, wheat grown with O seemed to be the most susceptible to climate change and the least productive among the fertilized plots. Significant correlations of grain yield with soil properties and with mean air temperature were observed. These findings suggest that inorganic + organic fertilizer can increase wheat yield and its stability by improvement in soil fertility and reduction in variability to climate change. Keywords: Winter wheat, Grain yield, Yield stability, AMMI analysis, Long-term fertilization
【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次