| Frontiers in Plant Science | |
| Unlocking the Genetic Diversity and Population Structure of a Wild Gene Source of Wheat, Aegilops biuncialis Vis., and Its Relationship With the Heading Time | |
| László Ivanizs1  István Monostori1  Eszter Gaál1  Andrea Lenykó-Thegze1  Tibor Kiss1  Éva Szakács1  András Farkas1  Péter Mikó1  Mária Megyeri1  Edina Türkösi1  Éva Darkó1  Kitti Szőke-Pázsi1  István Molnár2  Andrzej Kilian3  | |
| [1] Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary;Institute of Experimental Botany, Center of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia;University of Canberra, Diversity Array Technologies, Canberra, ACT, Australia; | |
| 关键词: Aegilops biuncialis; genetic diversity; DArTseq markers; population structure; hierarchical clustering; heading time; | |
| DOI : 10.3389/fpls.2019.01531 | |
| 来源: DOAJ | |
【 摘 要 】
Understanding the genetic diversity of Aegilops biuncialis, a valuable source of agronomical useful genes, may significantly facilitate the introgression breeding of wheat. The genetic diversity and population structure of 86 Ae. biuncialis genotypes were investigated by 32700 DArT markers with the simultaneous application of three statistical methods— neighbor-joining clustering, Principal Coordinate Analysis, and the Bayesian approach to classification. The collection of Ae. biuncialis accessions was divided into five groups that correlated well with their eco-geographic habitat: A (North Africa), B (mainly from Balkans), C (Kosovo and Near East), D (Turkey, Crimea, and Peloponnese), and E (Azerbaijan and the Levant region). The diversity between the Ae. biuncialis accessions for a phenological trait (heading time), which is of decisive importance in the adaptation of plants to different eco-geographical environments, was studied over 3 years. A comparison of the intraspecific variation in the heading time trait by means of analysis of variance and principal component analysis revealed four phenotypic categories showing association with the genetic structure and geographic distribution, except for minor differences. The detailed exploration of genetic and phenologic divergence provides an insight into the adaptation capacity of Ae. biuncialis, identifying promising genotypes that could be utilized for wheat improvement.
【 授权许可】
Unknown