Coatings | |
First Principles Study of Gas Molecules Adsorption on Monolayered β-SnSe | |
Daoguo Yang1  Guoqi Zhang1  Tianhan Liu1  Hongbo Qin1  | |
[1] School of Mechanical and Electronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China; | |
关键词: β-SnSe; first principles; gas sensor; gas molecules; adsorption behavior; | |
DOI : 10.3390/coatings9060390 | |
来源: DOAJ |
【 摘 要 】
For the purpose of exploring the application of two-dimensional (2D) material in the field of gas sensors, the adsorption properties of gas molecules, CO, CO2, CH2O, O2, NO2, and SO2 on the surface of monolayered tin selenium in β phase (β-SnSe) has been researched by first principles calculation based on density functional theory (DFT). The results indicate that β-SnSe sheet presents weak physisorption for CO and CO2 molecules with small adsorption energy and charge transfers, which show that a β-SnSe sheet is not suitable for sensing CO and CO2. The adsorption behavior of CH2O molecules adsorbed on a β-SnSe monolayer is stronger than that of CO and CO2, revealing that the β-SnSe layer can be applied to detect CH2O as physical sensor. Additionally, O2, NO2, and SO2 are chemically adsorbed on a β-SnSe monolayer with moderate adsorption energy and considerable charge transfers. All related calculations reveal that β-SnSe has a potential application in detecting and catalyzing O2, NO2, and SO2 molecules.
【 授权许可】
Unknown