期刊论文详细信息
Energies
Degradation of Hydrophobic, Anti-Soiling Coatings for Solar Module Cover Glass
JohnM. Walls1  Fabiana Lisco1  Farwah Bukhari1  Kenan Isbilir1  Soňa Uličná1  KurtL. Barth2  Alan Taylor3 
[1] Centre for Renewable Energy Systems Technology (CREST), Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK;Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA;TWI, Granta Park, Great Abington, Cambridge CB21 6AL, UK;
关键词: photovoltaics (PV);    anti-soiling coating;    hydrophobic coating;    damp heat;    UV exposure;    surface analysis;   
DOI  :  10.3390/en13153811
来源: DOAJ
【 摘 要 】

Soiling of solar module cover glass is a serious problem for solar asset managers. It causes a reduction in power output due to attenuation of the incident light, and reduces the return on investment. Regular cleaning is required to mitigate the effect but this is a costly procedure. The application of transparent hydrophobic, anti-soiling coatings to the cover glass is a promising solution. These coatings have low surface energy and contaminants do not adhere well. Even if soiling does remain on the coated surface, it is much more easily removed during cleaning. The performance of the coatings is determined using the water contact angle and roll-off angle measurements. However, although hydrophobic coatings hold out great promise, outdoor testing revealed degradation that occurs surprisingly quickly. In this study, we report on results using laboratory-based damp heat and UV exposure environmental tests. We used SEM surface imaging and XPS surface chemical analysis to study the mechanisms that lead to coating degradation. Loss of surface fluorine from the coatings was observed and this appeared to be a major issue. Loss of nanoparticles was also observed. Blistering of surfaces also occurs, leading to loss of coating material. This was probably due to the movement of retained solvents and was caused by insufficient curing. This mechanism is avoidable if care is taken for providing and carrying out carefully specified curing conditions. All these symptoms correlate well with observations taken from parallel outdoor testing. Identification of the mechanisms involved will inform the development of more durable anti-soiling, hydrophobic coatings for solar application.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次