Polymers | |
ON/OFF Switchable Nanocomposite Membranes for Separations | |
Taegyun Kwon1  Jinyoung Chun2  | |
[1] Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea;Energy & Environment Division, Korea Institute of Ceramic Engineering & Technology (KICET), Gyeongnam 52851, Korea; | |
关键词: nanocomposite; membrane; reversibility; permeability; selectivity; stimuli-responsive; | |
DOI : 10.3390/polym12102415 | |
来源: DOAJ |
【 摘 要 】
Although water, air, and other resources are abundant on earth, they have been subjected to strict environmental regulations. This is because of their limitation of availability for human consumption. In the separation industry, the membrane system was introduced to increase the amount of resources available to mankind. Experts used an easy-to-use polymeric material to design several membranes with porous structures for wastewater treatment, gas separation, and chemical removal; consequently, they succeeded in obtaining positive results. However, past polymeric membranes exhibited a chronic drawback such that it was difficult to simultaneously augment the permeate flux and improve its selectivity toward certain substances. Because of the trade-off relationship that existed between permeability and selectivity, the membrane efficiency was not very good; consequently, the cost-effectiveness was significantly hindered because there was no other alternative than to replace the membrane in order to maintain its initial characteristics steadily. This review begins with the introduction of a polymer nanocomposite (PNC) membrane that has been designed to solve the chronic problem of polymeric membranes; subsequently, the stimuli-responsive PNC membrane is elucidated, which has established itself as a popular topic among researchers in the separation industry for several decades. Furthermore, we have listed the different types and examples of stimuli-responsive PNC membranes, which can be switched by external stimuli, while discussing the future direction of the membrane separation industry.
【 授权许可】
Unknown