Materials | |
Improving the Dimensional Stability and Mechanical Properties of AISI 316L + B Sinters by Si3N4 Addition | |
Ricardo Buzolin1  Christof Sommitsch1  Mateusz Skałoń1  Jan Kazior2  Marek Hebda2  | |
[1] IMAT Institute of Materials Science, Joining and Forming, Graz University of Technology, Kopernikusgasse 24/1, 8010 Graz, Austria;Institute of Materials Engineering, Cracow University of Technology, Cracow, 24 Warszawska ave, 31-155 Kraków, Poland; | |
关键词: boron; 316L; silicon nitride; shape distortion; liquid phase sintering; mechanical properties; | |
DOI : 10.3390/ma12111798 | |
来源: DOAJ |
【 摘 要 】
The following paper describes a new and effective method to obtain high-density sinters with simultaneously decreased distortions, produced by one press and sinter operation. This effect was achieved through the induced disappearance of the eutectic liquid phase. The study was carried out on AISI 316L stainless steel powder that was mixed with elemental boron and silicon nitride. Boron was used as a sintering process activator. The scientific novelty of this publication consists of the use of a silicon nitride as a solid-state nitrogen carrier that was intended to change the borides’ morphology by binding boron. Based on the thermodynamic calculations, 20 blends of various compositions were tested for physical properties, porosity, microstructure, and mechanical properties. Moreover, phase compositions for selected samples were analyzed. It was shown that the addition of silicon nitride as a nitrogen carrier decreases the boron-based eutectic phase volume and both increases the mechanical properties and decreases after-sintering distortions. An explanation of the observed phenomena was also proposed.
【 授权许可】
Unknown