Energies | |
Real-Gas-Flamelet-Model-Based Numerical Simulation and Combustion Instability Analysis of a GH2/LOX Rocket Combustor with Multiple Injectors | |
Won-Sub Hwang1  Jeong-Yeol Choi1  Bu-Kyeng Sung1  Kang Y. Huh2  Woojoo Han2  Hee Sun Han3  Chae Hoon Sohn3  Bok Jik Lee4  | |
[1] Department of Aerospace Engineering, Pusan National University, Pusan 46241, Korea;Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea;Institute of Advanced Aerospace Technology, Seoul National University, Seoul 08826, Korea; | |
关键词: large-eddy simulation (LES); DLR-BKD combustor; Redlich–Kwong–Peng–Robinson equation of state; steady laminar flamelet model; combustion instability; | |
DOI : 10.3390/en14020419 | |
来源: DOAJ |
【 摘 要 】
A large eddy simulation (LES) and combustion instability analysis are performed using OpenFOAM for the multiple shear-coaxial injector combustor DLR-BKD (in German Deutsches Zentrum für Luft–Brennkammer D, German Aerospace Center–Combustion Chamber D), which is a laboratory-scale combustor operating in a real-gas environment. The Redlich–Kwong–Peng–Robinson equation of state and steady-laminar flamelet model are adopted in the simulation to accurately capture the real-gas combustion effects. Moreover, the stable combustion under the LP4 condition is numerically analyzed, and the characteristics of the combustion flow field are investigated. In the numerical simulation of the combustion instability, the instability is generated by artificially superimposing the 1st transverse standing wave solution on the stable combustion solution. To decompose the combustion instability mode, the dynamic mode decomposition method is applied. Several combustion instability modes are qualitatively and quantitatively identified through contour plots and graphs, and the sustenance process of the limit cycle is investigated.
【 授权许可】
Unknown