期刊论文详细信息
Revista Árvore
USE OF ARTIFICIAL NEURAL NETWORKS IN PREDICTING PARTICLEBOARD QUALITY PARAMETERS
关键词: Inteligência artificial;    Painéis de partículas;    Propriedades físico-mecânicas;   
DOI  :  10.1590/0100-67622016000500019
来源: DOAJ
【 摘 要 】

ABSTRACT This study aims to assess Artificial Neural Networks (ANN) in predicting particleboard quality based on its physical and mechanical properties. Particleboards were manufactured using eucalyptus (Eucalyptus grandis) and bonded with urea-formaldehyde and phenol-formaldehyde resins. To characterize quality, physical (density and water absorption and thickness swelling after 24-hour immersion) and mechanical (static bending strength and internal bond) properties were assessed. For predictions, adhesive type and particleboard density were adopted as ANN input variables. Networks of multilayer Perceptron (MLP) were adopted, training 100 networks for each assessed parameter. The results pointed out ANN as effective in predicting quality parameters of particleboards. With this technique, all the assessed properties presented models with adjustments higher than 0.90.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:2次