kp Equation by Recent Approaches" /> 期刊论文

期刊论文详细信息
Crystals
Explore Optical Solitary Wave Solutions of the kp Equation by Recent Approaches
Hammad Alotaibi1 
[1] Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
关键词: optical solitary solution;    direct method;    fluid dynamics;    nonlinear evolution equations;    Kadomtsev–Petviashvili (kp);    addendum to Kudryashov’s method;   
DOI  :  10.3390/cryst12020159
来源: DOAJ
【 摘 要 】

The study of nonlinear evolution equations is a subject of active interest in different fields including physics, chemistry, and engineering. The exact solutions to nonlinear evolution equations provide insightful details and physical descriptions into many problems of interest that govern the real world. The Kadomtsev–Petviashvili (kp) equation, which has been widely used as a model to describe the nonlinear wave and the dynamics of soliton in the field of plasma physics and fluid dynamics, is discussed in this article in order to obtain solitary solutions and explore their physical properties. We obtain several new optical traveling wave solutions in the form of trigonometric, hyperbolic, and rational functions using two separate direct methods: the (w/g)-expansion approach and the Addendum to Kudryashov method (akm). The nonlinear partial differential equation (nlpde) is reduced into an ordinary differential equation (ode) via a wave transformation. The derived optical solutions are graphically illustrated using Maple 15 software for specific parameter values. The traveling wave solutions discovered in this work can be viewed as an example of solutions that can empower us with great flexibility in the systematic analysis and explanation of complex phenomena that arise in a variety of problems, including protein chemistry, fluid mechanics, plasma physics, optical fibers, and shallow water wave propagation.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次