期刊论文详细信息
Boundary Value Problems
Three positive solutions for second-order periodic boundary value problems with sign-changing weight
Ruyun Ma1  Zhiqian He1  Man Xu1 
[1] Department of Mathematics, Northwest Normal University;
关键词: Three positive solutions;    Periodic boundary value problem;    Bifurcation;   
DOI  :  10.1186/s13661-018-1011-1
来源: DOAJ
【 摘 要 】

Abstract In this paper, we study the global structure of positive solutions of periodic boundary value problems {−u″(t)+q(t)u(t)=λh(t)f(u(t)),t∈(0,2π),u(0)=u(2π),u′(0)=u′(2π), $$\textstyle\begin{cases} -u''(t)+q(t)u(t)=\lambda h(t)f(u(t)), \quad t\in (0,2\pi ), \\ u(0)=u(2\pi ), \quad\quad u'(0)=u'(2\pi ), \end{cases} $$ where q∈C([0,2π],[0,+∞)) $q\in C([0,2\pi ], [0, +\infty ))$ with q≢0 $q\not \equiv 0$, f∈C(R,R) $f\in C(\mathbb{R},\mathbb{R})$, the weight h∈C[0,2π] $h\in C[0,2\pi ]$ is a sign-changing function, λ is a parameter. We prove the existence of three positive solutions when h(t) $h(t)$ has n positive humps separated by n+1 $n+1$ negative ones. The proof is based on the bifurcation method.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次