Electronics | |
A Framework for Model and Verification of Safety-Critical Operating System Based on ARINC653 | |
Wenjing Xu1  Dianfu Ma1  | |
[1] State Key Laboratory of Software Development Environment, School of Computer Science and Engineering, Beihang Univerisity, Beijing 100191, China; | |
关键词: formal verification; context-based; automated verification; ARINC653; | |
DOI : 10.3390/electronics10161934 | |
来源: DOAJ |
【 摘 要 】
As the scale and complexity of safety-critical software continue to grow, it is necessary to ensure safety and reliability to avoid minor errors leading to catastrophic disasters. Meantime, the traditional method, such as testing and simulation alone is insufficient to ensure the correctness of systems. This leads to using formal methods to provide sufficient evidence for systems. However, design a high assurance safety-critical system by formal methods is challenging due to the complexity of operating systems. In addition, the traditional interactive theorem prover used in system verification requires hand-written proofs, which are more expensive. Therefore, the efforts of providing a standardized formal framework as well as safety proofs, are notable for the develop a safety-critical system. The purpose of this paper is to provide a safety framework to establish a highly reliable and safety-critical operating system based on the ARINC653 standard, a multilevel and standardized formal model. To verify the functional correctness of this model, we propose a context-based formal proof method for programs. To achieve this goal, we first model 57 core services of ARINC653 and define the high-level requirements as pre-and post-conditions. Then, we construct a set of specification statements a formal axiom system transformed into logical sentences, and the core service model is transformed into a logical sentence sequence to be proved. Finally, a context-based formal proof system for specification correctness is developed. We have verified the correctness of safety-critical operating system core services with this system. Experience shows that the verification system we developed can be achieved the functional correctness of a complete OS with a low implement burden, and that can simplify the difficulty of automated verification and increase the degree of automation of proof.
【 授权许可】
Unknown