Sensors | |
High-Resolution Permanent Magnet Drive Using Separated Observers for Acceleration Estimation and Control | |
Po-Huan Chou1  Yi-Jen Lin2  Shih-Chin Yang2  | |
[1] Department of Advanced Servo Technology, Industrial Technology Research Institute, No. 195, Sec. 4, Chung Hsing Rd., Chutung, Hsinchu 310401, Taiwan;Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan; | |
关键词: PM motor system; disturbance rejection; acceleration control and estimation; | |
DOI : 10.3390/s22030725 | |
来源: DOAJ |
【 摘 要 】
This paper proposes a high-resolution permanent magnet (PM) motor drive based on acceleration estimation and control. The PM motor is widely implemented in the printed circuit board (PCB) manufacturing process. To achieve the demanded 1 μm drilling resolution, a sine/cosine incremental encoder is usually installed for motion control. In this paper, several improvements are developed to increase the motion control steady-state accuracy balancing transient response. First, the interpolation of every two encoder counts is proposed to increase the position sensing resolution. In this case, the transient response is improved through the high-resolution position feedback. Second, a closed-loop observer with two independent bandwidths is proposed for acceleration estimation. By using the interpolated position for acceleration estimation, the vibration-reflected high-frequency torque harmonics can be compensated through the acceleration closed-loop control. It reduces the steady-state error under the same sensing hardware. According to experimental results, both transient response and steady-state error can be improved on a PM motor using the proposed position interpolation and acceleration control.
【 授权许可】
Unknown