Sustainability | |
Metagenomic Study of the Community Structure and Functional Potentials in Maize Rhizosphere Microbiome: Elucidation of Mechanisms behind the Improvement in Plants under Normal and Stress Conditions | |
Ozede Nicholas Igiehon1  Olubukola Oluranti Babalola1  Oluwadara Pelumi Omotayo1  | |
[1] Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa; | |
关键词: alpha and beta diversity; functional diversities; maize rhizosphere; shotgun metagenomics; soil properties; sustainable agriculture; | |
DOI : 10.3390/su13148079 | |
来源: DOAJ |
【 摘 要 】
The community of microbes in the rhizosphere region is diverse and contributes significantly to plant growth and crop production. Being an important staple and economic crop, the maize rhizosphere microbiota has been studied in the past using culture-dependent techniques. However, these limited culturing methods often do not help in understanding the complex community of microbes in the rhizosphere. Moreover, the vital biogeochemical processes carried out by these organisms are yet to be fully characterized. Herein, shotgun metagenomics, which enables the holistic study of several microbial environments, was employed to examine the community structure and functional potentials of microbes in the maize rhizosphere and to assess the influence of environmental variables on these. The dominant microbial phyla found in the soil environments include Actinobacteria, Microsporidia, Bacteroidetes, Thaumarchaeota, Proteobacteria and Firmicutes. Carbohydrate metabolism, protein metabolism and stress metabolism constitute the major functional categories in the environments. The beta diversity analysis indicated significant differences (p = 0.01) in the community structure and functional categories across the samples. A correlation was seen between the physical and chemical properties of the soil, and the structural and functional diversities. The canonical correspondence analysis carried out showed that phosphorus, N-NO3, potassium and organic matter were the soil properties that best influenced the structural and functional diversities of the soil microbes. It can be inferred from this study that the maize rhizosphere is a hotspot for microorganisms of agricultural and biotechnological importance which can be used as bioinoculants for sustainable agriculture.
【 授权许可】
Unknown