期刊论文详细信息
Advances in Difference Equations
Spin(7) $\operatorname{Spin}(7)$-structure equation and the vector elliptic Liouville equation
Shiping Zhong1 
[1] School of Mathematical Sciences, Fudan University;
关键词: Spin ( 7 ) $\operatorname{Spin}(7)$ -structure equation;    Octonions;    Almost complex structure;    The vector elliptic Liouville equation;   
DOI  :  10.1186/s13662-018-1765-x
来源: DOAJ
【 摘 要 】

Abstract The mapping between Belavin–Polyakov (BP) equation for the evolution of a unit tangent vector T∈S2 $T\in \mathbb{S}^{2}$ of a space curve in R3 $\mathbb{R}^{3}$ and the elliptic Liouville equation has been shown by Balakrishnan (see Phys. Lett. A 204:243–246, 1995). In the present work, this result is effectively extended by mapping the BP equation for the unit tangent T∈S6 $T\in \mathbb{S}^{6}$ of a space curve in R7 $\mathbb{R}^{7}$ to the vector elliptic Liouville equation. To show this correspondence, Spin(7) $\operatorname{Spin}(7)$-frame field on the curve is used.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次