期刊论文详细信息
Modern Stochastics: Theory and Applications
Cliquet option pricing in a jump-diffusion Lévy model
Markus Hess1 
[1] Independent;
关键词: Cliquet option pricing;    path-dependent exotic option;    equity indexed annuity;    structured product;    sensitivity analysis;    Greeks;    jump-diffusion model;    Lévy process;    stochastic differential equation;    compound Poisson process;    Fourier transform;    distribution function;   
DOI  :  10.15559/18-VMSTA107
来源: DOAJ
【 摘 要 】

We investigate the pricing of cliquet options in a jump-diffusion model. The considered option is of monthly sum cap style while the underlying stock price model is driven by a drifted Lévy process entailing a Brownian diffusion component as well as compound Poisson jumps. We also derive representations for the density and distribution function of the emerging Lévy process. In this setting, we infer semi-analytic expressions for the cliquet option price by two different approaches. The first one involves the probability distribution function of the driving Lévy process whereas the second draws upon Fourier transform techniques. With view on sensitivity analysis and hedging purposes, we eventually deduce representations for several Greeks while putting emphasis on the Vega.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次