Journal of Personalized Medicine | |
Deep Learning Algorithm for Management of Diabetes Mellitus via Electrocardiogram-Based Glycated Hemoglobin (ECG-HbA1c): A Retrospective Cohort Study | |
Wen-Hui Fang1  Chia-Cheng Lee2  Chin-Sheng Lin3  Yung-Tsai Lee4  Feng-Chih Kuo5  Yu-Sheng Lou6  Chin Lin6  | |
[1] Department of Family and Community Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Rd., Neihu, Taipei 114, Taiwan;Department of Medical Informatics, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Rd., Neihu, Taipei 114, Taiwan;Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Rd., Neihu, Taipei 114, Taiwan;Division of Cardiovascular Surgery, Cheng Hsin Rehabilitation and Medical Center, No 45, Cheng Hsin St., Beitou, Taipei 112, Taiwan;Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, No 325, Section 2, Cheng-Kung Rd., Neihu, Taipei 114, Taiwan;Graduate Institute of Life Sciences, National Defense Medical Center, No.161, Section 6, Min-Chun E. Rd., Neihu, Taipei 114, Taiwan; | |
关键词: artificial intelligence; electrocardiogram; deep learning; glycated hemoglobin; diabetes mellitus; | |
DOI : 10.3390/jpm11080725 | |
来源: DOAJ |
【 摘 要 】
Background: glycated hemoglobin (HbA1c) provides information on diabetes mellitus (DM) management. Electrocardiography (ECG) is a noninvasive test of cardiac activity that has been determined to be related to DM and its complications. This study developed a deep learning model (DLM) to estimate HbA1c via ECG. Methods: there were 104,823 ECGs with corresponding HbA1c or fasting glucose which were utilized to train a DLM for calculating ECG-HbA1c. Next, 1539 cases from outpatient departments and health examination centers provided 2190 ECGs for initial validation, and another 3293 cases with their first ECGs were employed to analyze its contributions to DM management. The primary analysis was used to distinguish patients with and without mild to severe DM, and the secondary analysis was to explore the predictive value of ECG-HbA1c for future complications, which included all-cause mortality, new-onset chronic kidney disease (CKD), and new-onset heart failure (HF). Results: we used a gender/age-matching strategy to train a DLM to achieve the best AUCs of 0.8255 with a sensitivity of 71.9% and specificity of 77.7% in a follow-up cohort with correlation of 0.496 and mean absolute errors of 1.230. The stratified analysis shows that DM presented in patients with fewer comorbidities was significantly more likely to be detected by ECG-HbA1c. Patients with higher ECG-HbA1c under the same Lab-HbA1c exhibited worse physical conditions. Of interest, ECG-HbA1c may contribute to the mortality (gender/age adjusted hazard ratio (HR): 1.53, 95% conference interval (CI): 1.08–2.17), new-onset CKD (HR: 1.56, 95% CI: 1.30–1.87), and new-onset HF (HR: 1.51, 95% CI: 1.13–2.01) independently of Lab-HbA1c. An additional impact of ECG-HbA1c on the risk of all-cause mortality (C-index: 0.831 to 0.835, p < 0.05), new-onset CKD (C-index: 0.735 to 0.745, p < 0.01), and new-onset HF (C-index: 0.793 to 0.796, p < 0.05) were observed in full adjustment models. Conclusion: the ECG-HbA1c could be considered as a novel biomarker for screening DM and predicting the progression of DM and its complications.
【 授权许可】
Unknown