Water | |
Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC) | |
Donata Dubber1  Jan Knappe1  Laurence W. Gill1  | |
[1] Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland; | |
关键词: on-site wastewater; organics; fluorescence; septic tank; percolation area; biomat; | |
DOI : 10.3390/w13192627 | |
来源: DOAJ |
【 摘 要 】
This research has used fluorescence spectroscopy and parallel factor analysis (PARAFAC) in order to characterize dissolved organic matter in septic tank effluent, as it passes through the biomat/biozone, infiltrating into the unsaturated zone beneath domestic wastewater treatment systems (DWWTSs). Septic tank effluent and soil moisture samples from the percolation areas of two DWWTSs have been analyzed using fluorescence excitation–emission spectroscopy. Using PARAFAC analysis, a six-component model was obtained whereby individual model components could be assigned to humified organic matter, fluorescent whitening compounds (FWCs), and protein-like compounds. This has shown that fluorescent dissolved organic matter (FDOM) in domestic wastewater was dominated by protein-like compounds and FWCs and that, with treatment in the percolation area, protein-like compounds and FWCs are removed and contributions from terrestrially derived (soil) organic decomposition compounds increase, leading to a higher degree of humification and aromaticity. The results also suggest that the biomat is the most important element determining FDOM removal and consequently affecting DOM composition. Furthermore, no significant difference was found in the FDOM composition of samples from the percolation area irrespective of whether they received primary or secondary effluent. Overall, the tested fluorometric methods were shown to provide information about structural and functional properties of organic matter which can be useful for further studies concerning bacterial and/or virus transport from DWWTSs.
【 授权许可】
Unknown