期刊论文详细信息
Stem Cell Research & Therapy
TSG-6 secreted by human adipose tissue-derived mesenchymal stem cells ameliorates severe acute pancreatitis via ER stress downregulation in mice
Yun Chan Jung1  Dong Ha Bhang2  Min-Ok Ryu3  Ju-Hyun An3  Hwa-Young Youn3  Woo-Jin Song3  Jin-Ok Ahn3  Aryung Nam3  Qiang Li3 
[1] Chaon, A-301-3, 240;Department of Molecular and Cellular Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine;Laboratory of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University;
关键词: Mesenchymal stem cells;    Endoplasmic reticulum stress;    NF-κB;    TSG-6;    Severe acute pancreatitis;   
DOI  :  10.1186/s13287-018-1009-8
来源: DOAJ
【 摘 要 】

Abstract Background Through recent studies, the onset of acute pancreatitis in pancreatic acinar cells (PACs) and the regulatory role of PACs in severe acute pancreatitis (SAP) have been revealed. During the early stages of pancreatitis, the endoplasmic reticulum (ER) in PACs undergoes significant changes, including swelling and vacuolization. In response to an increase in the extracellular stress in ER, PACs lose their functions, leading to cell apoptosis and inflammation response. The beneficial effects of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) on SAP have been well documented in previous studies. However, the underlying mechanism of their action remains controversial. Methods In this study, the therapeutic effects of intraperitoneally administered hAT-MSCs in a caerulein (50 μg/kg)- and lipopolysaccharide (LPS) (10 mg/kg)-co-induced SAP mouse model were evaluated. Inflammatory response and ER stress were measured in pancreatic tissue samples, and the beneficial effects were evaluated through quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blot, and immunofluorescence analysis. Results Inflammatory response and ER stress were ameliorated following hAT-MSC injection, and the beneficial effects were observed in the absence of significant engraftment of hAT-MSCs. hAT-MSCs transfected with siRNA-targeting tumour necrosis factor-α-induced gene/protein 6 (TSG-6) were unable to inhibit ER stress and inflammation. In addition, TSG-6 from hAT-MSCs significantly suppressed ER stress-induced apoptosis and nuclear factor kappa B (NF-κB) activity in SAP model mice. Conclusions TSG-6 secreted by hAT-MSCs protects PACs in SAP model mice via the inhibition of ER stress, as well as inflammatory responses. This study has revealed a new area for ER stress-targeted therapy in SAP patients. Graphical abstract

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次