期刊论文详细信息
Frontiers in Computational Neuroscience
Structure learning and the Occam's razor principle: A new view of human function acquisition
Pascal eMamassian1  Robert J van Beers2  Jeroen B. J. Smeets2  Devika eNarain2  Eli eBrenner2 
[1] Ecole Normale Supérieure, (CNRS UMR 8248);MOVE Research Institute Amsterdam, VU University;Max Planck Institute for Biological Cybernetics;Max Planck Institute for Intelligent Systems;
关键词: associative learning;    sensorimotor learning;    bayesian model selection;    gaussian processes;    structure learning;    Function learning;   
DOI  :  10.3389/fncom.2014.00121
来源: DOAJ
【 摘 要 】

We often encounter pairs of variables in the world whose mutual relationship can be described by a function. After training, human responses closely correspond to these functional relationships. Here we study how humans predict unobserved segments of a function that they have been trained on and we compare how human predictions differ to those made by various function-learning models in the literature. Participants' performance was best predicted by the polynomial functions that generated the observations. Further, participants were able to explicitly report the correct generating function in most cases upon a post-experiment survey. This suggests that humans can abstract functions. To understand how they do so, we modeled human learning using an hierarchical Bayesian framework organized at two levels of abstraction: function learning and parameter learning, and used it to understand the time course of participants' learning as we surreptitiously changed the generating function over time. This Bayesian model selection framework allowed us to analyze the time course of function learning and parameter learning in relative isolation. We found that participants acquired new functions as they changed and even when parameter learning was not completely accurate, the probability that the correct function was learned remained high. Most importantly, we found that humans selected the simplest-fitting function with the highest probability and that they acquired simpler functions faster than more complex ones. Both aspects of this behavior, extent and rate of selection, present evidence that human function learning obeys the Occam's razor principle.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次