Boundary Value Problems | |
Dynamics of blow-up solutions for the Schrödinger–Choquard equation | |
Kun Liu1  Cunqin Shi1  | |
[1] School of Mathematics and Statistic, Longdong University; | |
关键词: Nonlinear Schrödinger–Choquard equation; Blow-up solutions; The dynamical properties; | |
DOI : 10.1186/s13661-018-0985-z | |
来源: DOAJ |
【 摘 要 】
Abstract In this paper, we study the dynamics of blow-up solutions for the nonlinear Schrödinger–Choquard equation iψt+Δψ=λ1|ψ|p1ψ+λ2(Iα∗|ψ|p2)|ψ|p2−2ψ. $$i\psi_{t}+\Delta \psi =\lambda_{1}\vert \psi \vert ^{p_{1}}\psi +\lambda_{2}\bigl(I _{\alpha }\ast \vert \psi \vert ^{p_{2}}\bigr)\vert \psi \vert ^{p_{2}-2}\psi. $$ We first show existence of blow-up solutions and obtain a sharp threshold mass of global existence and blow-up for this equation with λ1>0 $\lambda_{1}>0$, λ2<0 $\lambda_{2}<0$, 0
Unknown 【 授权许可】