Frontiers in Genetics | |
NCP-BiRW: A Hybrid Approach for Predicting Long Noncoding RNA-Disease Associations by Network Consistency Projection and Bi-Random Walk | |
Ke Wang1  Chu Zheng1  Hongyan Cao1  Jingjing Yan1  Hong Yang1  Yanling Liu2  Yanbo Zhang3  | |
[1] Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China;Department of Mathematics, Changzhi Medical College, Changzhi, China;School of Health and Service Management, Shanxi University of Chinese Medicine, Taiyuan, China;Shanxi Provincial Key Laboratory of Major Diseases Risk Assessment, Taiyuan, China; | |
关键词: lncRNA-disease association prediction; integrated similarity; network consistency projection; normalization; bi-random walk; | |
DOI : 10.3389/fgene.2022.862272 | |
来源: DOAJ |
【 摘 要 】
Long non-coding RNAs (lncRNAs) play significant roles in the disease process. Understanding the pathological mechanisms of lncRNAs during the course of various diseases will help clinicians prevent and treat diseases. With the emergence of high-throughput techniques, many biological experiments have been developed to study lncRNA-disease associations. Because experimental methods are costly, slow, and laborious, a growing number of computational models have emerged. Here, we present a new approach using network consistency projection and bi-random walk (NCP-BiRW) to infer hidden lncRNA-disease associations. First, integrated similarity networks for lncRNAs and diseases were constructed by merging similarity information. Subsequently, network consistency projection was applied to calculate space projection scores for lncRNAs and diseases, which were then introduced into a bi-random walk method for association prediction. To test model performance, we employed 5- and 10-fold cross-validation, with the area under the receiver operating characteristic curve as the evaluation indicator. The computational results showed that our method outperformed the other five advanced algorithms. In addition, the novel method was applied to another dataset in the Mammalian ncRNA-Disease Repository (MNDR) database and showed excellent performance. Finally, case studies were carried out on atherosclerosis and leukemia to confirm the effectiveness of our method in practice. In conclusion, we could infer lncRNA-disease associations using the NCP-BiRW model, which may benefit biomedical studies in the future.
【 授权许可】
Unknown