期刊论文详细信息
Applied Sciences
Numerical Simulation on Reflective Cracking Behavior of Asphalt Pavement
Houzhi Wang1  You Wu1  Jun Yang1  Haopeng Wang2 
[1] School of Transportation, Southeast University, Nanjing 211189, China;Section of Pavement Engineering, Faculty of Civil Engineering & Geosciences, Delft University of Technology, 2628CN Delft, The Netherlands;
关键词: reflection crack;    numerical analysis;    extended finite element method;    J-integral;    stress intensity factors;   
DOI  :  10.3390/app11177990
来源: DOAJ
【 摘 要 】

Cracks are one of the main problems that plague road workers. A correct understanding of the internal crack propagation mechanism of asphalt pavement will help road workers evaluate the road’s working status more comprehensively and make more reasonable decisions in design, construction, and maintenance work. This paper established a three-dimensional asphalt pavement layered model using the software ABAQUS and fracture mechanics theory and the extended finite element method were used to explore the mechanical response of the pavement base layer’s preset reflective cracks. This paper investigated the influence of the modulus of each layer, vehicle load on the principal stress, shear stress, J-integral, and two stress intensity factors (K1, K2) during the predetermined crack propagation process of the pavement base layer, and the entropy method was used to analyze the above-mentioned mechanical response. The results show that the main factor affecting the propagation of reflective cracks on asphalt pavements is the modulus of the bottom surface layer. However, from a modeling perspective, the effect of increasing load on crack growth is obvious. Therefore, in terms of technical feasibility, the prevention of reflective cracks should still be achieved by controlling the driving load and prohibiting overloading.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次