Minerals | |
Petrography, Mineralogy, and Geochemistry of Thermally Altered Coal in the Tashan Coal Mine, Datong Coalfield, China | |
Hongtao Ma1  Benjamin M. Saalidong1  Xiaoxia Song1  Kaijie Li1  | |
[1] Department of Geoscience and Engineering, Taiyuan University of Technology, Taiyuan 030024, China; | |
关键词: igneous intrusions; thermally altered coal; petrography; mineral; trace element; | |
DOI : 10.3390/min11091024 | |
来源: DOAJ |
【 摘 要 】
A suite of coal samples near a diabase dike were collected to investigate the petrographic, mineralogical, and geochemical characteristics of thermally altered coal in Datong Coalfield, China. Proximate analysis, vitrinite reflectance measurement, and petrographic analysis were applied to identify and characterize the alteration halo; optical microscope observation, qualitative X-ray diffractometry, and SEM-EDS were applied to study the phases, occurrence, and composition of minerals; XRF, ICP-MS, and AFS were applied to determine concentrations of major and trace elements; and the occurrence modes of elements were studied by correlation and hierarchical cluster analysis as well as SEM-EDS. The results demonstrated that the 3.6 m dike has caused an alteration halo of approximately 2 m in diameter. In addition, the thermally altered coals were characterized by high vitrinite reflectance, low volatile matter, and the occurrence of thermally altered organic particles. Dolomite and ankerite in the thermally altered coal may be derived from hydrothermal fluids, while muscovite and tobelite may be transformed from a kaolinite precursor. The average concentration of Sr in the Tashan thermally altered coal reached 1714 μg/g, which is over 12 times that of the Chinese coal; the phosphate minerals and Sr-bearing kaolinite account for this significant enrichment. The cluster analysis classified elements with geochemical associations into four groups: group 1 and 2 were associated with aluminosilicates, clays, and carbonates and exhibited enrichment in the coal/rock contact zone, indicating that the dike may be the source of the elements; group 3 included P2O5, Sr, Ba, and Be, which fluctuate in coals, suggesting that their concentrations were influenced by multiple-factors; group 4 did not manifest obvious variations in coals, implying that the coal itself was the source.
【 授权许可】
Unknown