期刊论文详细信息
Journal of Engineering and Sustainable Development
ROBUST DETECTION AND RECOGNITION SYSTEM BASED ON FACIAL EXTRACTION AND DECISION TREE
Muthana H. Hamd1  Ansam H. Rashed1 
[1] Department of Computer Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq;
关键词: face detection;    face recognition;    principal component analysis;    linear discriminant analysis;    local binary pattern histogram;    viola-jones;    feature extraction;    classification;   
DOI  :  10.31272/jeasd.25.4.4
来源: DOAJ
【 摘 要 】

Automatic face recognition system is suggested in this work on the basis of appearance based features focusing on the whole image as well as local based features focusing on critical face points like eyes, mouth, and nose for generating further details. Face detection is the major phase in face recognition systems, certain method for face detection (Viola-Jones) has the ability to process images efficiently and achieve high rates of detection in real time systems. Dimension reduction and feature extraction approaches are going to be utilized on the cropped image caused by detection. One of the simple, yet effective ways for extracting image features is the Local Binary Pattern Histogram (LBPH), while the technique of Principal Component Analysis (PCA) was majorly utilized in pattern recognition. Also, the technique of Linear Discriminant Analysis (LDA) utilized for overcoming PCA limitations was efficiently used in face recognition. Furthermore, classification is going to be utilized following the feature extraction. The utilized machine learning algorithms are PART and J48. The suggested system is showing high accuracy for detection with Viola-Jones 98.75, whereas the features which are extracted by means of LDA with J48 provided the best results of (F-measure, Recall, and Precision).

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次