期刊论文详细信息
Beilstein Journal of Organic Chemistry
A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells
Gleb Sorohhov1  Shi-Xia Liu1  Silvio Decurtins1  Michael Grätzel2  Chenyi Yi2 
[1] Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3012 Bern, Switzerland;Laboratory of Photonics and Interfaces, Institute of Chemical Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1050 Lausanne, Switzerland;
关键词: donor–acceptor systems;    dye-sensitized solar cells;    electrochemistry;    intramolecular charge transfer;    Knoevenagel reaction;    tetrathiafulvalene;   
DOI  :  10.3762/bjoc.11.118
来源: DOAJ
【 摘 要 】

Two new photosensitizers featured with a cyanoacrylic acid electron acceptor (A) and a hybrid electron donor (D) of cyclopentadithiophene and dithiafulvenyl, either directly linked or separated by a phenyl ring, were synthesized and characterized. Both of them undergo two reversible oxidations and strongly absorb in the visible spectral region due to a photo-induced intramolecular charge-transfer (ICT) transition. To a great extent, the electronic interaction between the D and A units is affected by the presence of a phenyl spacer. Without a phenyl ring, the D unit appears more difficult to oxidize due to a strong electron-withdrawing effect of the A moiety. In sharp contrast, the insertion of the phenyl ring between the D and A units leads to a broken π-conjugation and therefore, the oxidation potentials remain almost unchanged compared to those of an analogue without the A group, suggesting that the electronic coupling between D and A units is relatively weak. As a consequence, the lowest-energy absorption band shows a slight hypsochromic shift upon the addition of the phenyl spacer, indicative of an increased HOMO–LUMO gap. In turn, the direct linkage of D and A units leads to an effective π-conjugation, thus substantially lowering the HOMO–LUMO gap. Moreover, the application in dye-sensitized solar cells was investigated, showing that the power conversion efficiency increases by the insertion of the phenyl unit.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次