期刊论文详细信息
Energies
Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine
Xin Su1  Quanwei Li1  Jingjing He1  Hao Chen1  Bin Xie2 
[1] School of Automobile, Chang’an University, Xi’an 710064, China;Shaanxi Motor Group Co., Ltd., Xi’an 710200, China;
关键词: polyoxymethylene dimethyl ethers;    optical engine;    combustion;    injection strategy;    flame;   
DOI  :  10.3390/en14154608
来源: DOAJ
【 摘 要 】

Polyoxymethylene dimethyl ethers (PODE) are a newly appeared promising oxygenated alternative that can greatly reduce soot emissions of diesel engines. The combustion characteristics of the PODE and diesel blends (the blending ratios of PODE are 0%, 20%, 50% and 100% by volume, respectively) are investigated based on an optical engine under the injection timings of 6, 9, 12 and 15-degree crank angles before top dead center and injection pressures of 100 MPa, 120 MPa and 140 MPa in this study. The results show that both the ignition delay and combustion duration of the fuels decrease with the increasing of PODE ratio in the blends. However, in the case of the fuel supply of the optical engine being fixed, the heat release rate, cylinder pressure and temperature of the blend fuels decrease with the PODE addition due to the low lower heating value of PODE. The addition of PODE in diesel can significantly reduce the integrated natural flame luminosity and the soot formation under all injection conditions. When the proportion of the PODE addition is 50% and 100%, the chemical properties of the blends play a leading role in soot formation, while the change of the injection conditions have an inconspicuous effect on it. When the proportion of the PODE addition is 20%, the blend shows excellent characteristics in a comprehensive evaluation of combustion and soot reduction.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次