期刊论文详细信息
Array
Minute-wise frost prediction: An approach of recurrent neural networks
Mehran Abolhasan1  Justin Lipman2  Negin Shariati3  Ian Zhou3 
[1] Corresponding author at: University of Technology Sydney, Australia.;Food Agility CRC Ltd, 81 Broadway, Ultimo, NSW, 2007, Australia;University of Technology Sydney, Australia;
关键词: Frost prediction;    Internet of Things;    Machine learning;    Recurrent neural network;    Temporal prediction;   
DOI  :  
来源: DOAJ
【 摘 要 】

Frost events incur substantial economic losses to farmers. These events could induce damage to plants and crops by damaging the cells. In this article, a recurrent neural network-based method, automating the frost prediction process, is proposed. The recurrent neural network-based models leveraged in this article include the standard recurrent neural network, long short-term memory, and gated recurrent unit. The proposed method aims to increase the prediction frequency from once per 12–24 h for the next day or night events to minute-wise predictions for the next hour events. To achieve this goal, datasets from NSW and ACT of Australia are obtained. The experiments are designed considering the scene of deploying the model to the Internet of Things systems. Factors such as model processing speed, long-term error and data availability are reviewed. After model construction, there are three experiments. The first experiment tests the errors between different model types. The second and third experiments test the effect of sequence length on error and performance for recurrent neural network-based models. All tests introduce artificial neural network models as the baseline. Also, all tests for model error are conducted in two rounds with testing datasets from the current year (2016) and next year (2017). As a result, recurrent neural network-based models are more suitable for short-term deployment with a smaller sequence length. In contrast, artificial neural network models demonstrate a lower error over the long term with faster processing time. With the results presented, the limitations of the proposed method are discussed.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:5次