Mathematics | |
Design Optimization of a Traction Synchronous Homopolar Motor | |
Alecksey Anuchin1  Vladimir Prakht2  Vadim Kazakbaev2  Vladimir Dmitrievskii2  | |
[1] Department of Electric Drives, Moscow Power Engineering Institute, 111250 Moscow, Russia;Department of Electrical Engineering, Ural Federal University, 620002 Yekaterinburg, Russia; | |
关键词: optimal design; Nelder–Mead method; synchronous homopolar machine; synchronous homopolar motor; traction drives; traction motor; | |
DOI : 10.3390/math9121352 | |
来源: DOAJ |
【 摘 要 】
Synchronous homopolar motors (SHMs) have been attracting the attention of researchers for many decades. They are used in a variety of equipment such as aircraft and train generators, welding inverters, and as traction motors. Various mathematical models of SHMs have been proposed to deal with their complicated magnetic circuit. However, mathematical techniques for optimizing SHMs have not yet been proposed. This paper discusses various aspects of the optimal design of traction SHMs, applying the one-criterion unconstrained Nelder–Mead method. The considered motor is intended for use in a mining dump truck with a carrying capacity of 90 tons. The objective function for the SHM optimization was designed to reduce/improve the following main characteristics: total motor power loss, maximum winding current, and torque ripple. One of the difficulties in optimizing SHMs is the three-dimensional structure of their magnetic core, which usually requires the use of a three-dimensional finite element model. However, in this study, an original two-dimensional finite element model of a SHM was used; it allowed the drastic reduction in the computational burden, enabling objective optimization. As a result of optimization, the total losses in the motor decreased by up to 1.16 times and the torque ripple decreased by up to 1.34 times; the maximum armature winding current in the motor mode decreased by 8%.
【 授权许可】
Unknown