期刊论文详细信息
Future Internet
Dis-Cover AI Minds to Preserve Human Knowledge
Fabio Massimo Zanzotto1  Leonardo Ranaldi2  Francesca Fallucchi2 
[1] Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;Department of Innovation and Information Engineering, Guglielmo Marconi University, 00193 Roma, Italy;
关键词: machine learning;    natural language processing;    deep learning;    Psycholinguistics;   
DOI  :  10.3390/fi14010010
来源: DOAJ
【 摘 要 】

Modern AI technologies make use of statistical learners that lead to self-empiricist logic, which, unlike human minds, use learned non-symbolic representations. Nevertheless, it seems that it is not the right way to progress in AI. The structure of symbols—the operations by which the intellectual solution is realized—and the search for strategic reference points evoke important issues in the analysis of AI. Studying how knowledge can be represented through methods of theoretical generalization and empirical observation is only the latest step in a long process of evolution. For many years, humans, seeing language as innate, have carried out symbolic theories. Everything seems to have skipped ahead with the advent of Machine Learning. In this paper, after a long analysis of history, the rule-based and the learning-based vision, we would investigate the syntax as possible meeting point between the different learning theories. Finally, we propose a new vision of knowledge in AI models based on a combination of rules, learning, and human knowledge.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次