International Journal of Molecular Sciences | |
Elimination of Teratogenic Human Induced Pluripotent Stem Cells by Bee Venom via Calcium-Calpain Pathway | |
Sun-Ku Chung1  Aeyung Kim1  Seo-Young Lee2  Bu-Yeo Kim2  | |
[1] Clinical Medicine Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea;Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Korea; | |
关键词: bee venom; induced pluripotent stem cells; apoptosis; necroptosis; calcium; calpain; | |
DOI : 10.3390/ijms21093265 | |
来源: DOAJ |
【 摘 要 】
Induced pluripotent stem cells (iPSCs) are regarded as a promising option for cell-based regenerative medicine. To obtain safe and efficient iPSC-based cell products, it is necessary to selectively eliminate the residual iPSCs prior to in vivo implantation due to the risk of teratoma formation. Bee venom (BV) has long been used in traditional Chinese medicine to treat inflammatory diseases and relieve pain, and has been shown to exhibit anti-cancer, anti-mutagenic, anti-nociceptive, and radioprotective activities. However, the potential benefits of BV in iPSC therapy, particularly its anti-teratoma activity, have not been examined. In this study, we found that BV selectively induced cell death in iPSCs, but not in iPSC-derived differentiated cells (iPSCs-Diff). BV rapidly disrupted cell membrane integrity and focal adhesions, followed by induction of apoptosis and necroptosis in iPSCs. We also found that BV remarkably enhanced intracellular calcium levels, calpain activation, and reactive oxygen speciesgeneration in iPSCs. BV treatment before in ovo grafting efficiently prevented iPSC-derived teratoma formation. In contrast, no DNA damage was observed in iPSCs-Diff following BV treatment, further demonstrating the safety of BV for use with iPSCs-Diff. Taken together, these findings show that BV has potent anti-teratoma activity by eliminating residual iPSCs, and can be used for the development of effective and safe iPSC-based cell therapies.
【 授权许可】
Unknown