Bioactive Materials | |
Mechanobiologically optimized Ti–35Nb–2Ta–3Zr improves load transduction and enhances bone remodeling in tilted dental implant therapy | |
Liqiang Wang1  Chuanyuan Mao2  Weijun Yu2  Lu Lin2  Min Jin2  Xiaoqing Shang3  Xiaoqin Zeng3  Eryi Lu4  Yingchen Wang4  | |
[1] Corresponding author.;Department of Stomatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China;National Engineering Research Center of Light Alloy Net Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China;State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Materials Genome Initiative Centre, Shanghai Jiao Tong University, Shanghai, 200240, China; | |
关键词: Ti-35Nb–2Ta–3Zr; Tilted implant; Low elastic modulus; Bone remodeling; Mechanobiologically optimization; | |
DOI : | |
来源: DOAJ |
【 摘 要 】
The tilted implant with immediate function is increasingly used in clinical dental therapy for edentulous and partially edentulous patients with excessive bone resorption and the anatomic limitations in the alveolar ridge. However, peri-implant cervical bone loss can be caused by the stress shielding effect. Herein, inspired by the concept of “materiobiology”, the mechanical characteristics of materials were considered along with bone biology for tilted implant design. In this study, a novel Ti–35Nb–2Ta–3Zr alloy (TNTZ) implant with low elastic modulus, high strength and favorable biocompatibility was developed. Then the human alveolar bone environment was mimicked in goat and finite element (FE) models to investigate the mechanical property and the related peri-implant bone remodeling of TNTZ compared to commonly used Ti–6Al–4V (TC4) in tilted implantation under loading condition. Next, a layer-by-layer quantitative correlation of the FE and X-ray Microscopy (XRM) analysis suggested that the TNTZ implant present better mechanobiological characteristics including improved load transduction and increased bone area in the tilted implantation model compared to TC4 implant, especially in the upper 1/3 region of peri-implant bone that is “lower stress”. Finally, combining the static and dynamic parameters of bone, it was further verified that TNTZ enhanced bone remodeling in “lower stress” upper 1/3 region. This study demonstrates that TNTZ is a mechanobiological optimized tilted implant material that enhances load transduction and bone remodeling.
【 授权许可】
Unknown