期刊论文详细信息
Applied Sciences
Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites
MohamedS. Alotaibi1  HassanM. El-Dessouky1  Ying Wang2  MohamedNasr Saleh3 
[1] Composite Centre, AMRC with Boeing, University of Sheffield, Rotherham S60 5TZ, UK;Henry Moseley X-ray Imaging Facility, School of Materials, University of Manchester, Manchester M13 9PL, UK;Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands;
关键词: carbon fibre;    3-dimensional reinforcement;    impact behaviour;    nondestructive testing;    X-ray computed tomography;   
DOI  :  10.3390/app11052364
来源: DOAJ
【 摘 要 】

The effect of the weaving architecture and the z-binding yarns, for 2D and 3D woven composites on the low-velocity impact resistance of carbon fibre reinforced composites, is investigated and benchmarked against noncrimp fabric (NCF). Four architectures, namely: NCF, 2D plain weave (2D-PW), 3D orthogonal: plain (ORT-PW) and twill (ORT-TW), were subjected to 15 J impact using a 16 mm-diameter, 6.7 kg hemispherical impactor. Nondestructive techniques, including ultrasonic C-scanning, Digital Image Correlation (DIC) and X-ray computed tomography (CT) were used to map and quantify the size of the induced barely visible impact damage (BVID). The energy absorption of each architecture was correlated to the damage size: both in-plane and in-depth directions. The 3D architectures, regardless of their unit-cell size, demonstrated the highest impact resistance as opposed to 2D-PW and the NCF. X-ray CT segmentation showed the effect of the higher frequency of the z-binding yarns, in the ORT-PW case, in delamination and crack arresting even when compared to the other 3D architecture (ORT-TW). Among all the architectures, ORT-PW exhibited the highest damage resistance with the least damage size. This suggests that accurate design of the z-binding yarns’ path and more importantly its frequency in 3D woven architectures is essential for impact-resistant composite structures.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次