期刊论文详细信息
Foods
Modelling and Classification of Apple Textural Attributes Using Sensory, Instrumental and Compositional Analyses
MargaretA. Cliff1  Masoumeh Bejaei2  Kareen Stanich2 
[1] Food Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada;Summerland Research and Development Centre, Science and Technology Branch, Agriculture and Agri-Food Canada, Summerland, BC V0H 1Z0, Canada;
关键词: apple;    linear discriminant analysis;    prediction models;    principal component analysis;    sensory evaluation;    textural evaluations;   
DOI  :  10.3390/foods10020384
来源: DOAJ
【 摘 要 】

Textural characteristics of fruit are important for their quality, storability, and consumer acceptance. While texture can be evaluated instrumentally or sensorially, instrumental measurements are preferred if they can be reliably related to human perception. The objectives of this research were to validate instrumental measurements with sensory determinations, develop a classification scheme to group apples by their textural characteristics, and create models to predict sensory attributes from instrumental and compositional analyses. The textural characteristics (crispness, hardness, juiciness, and skin toughness) of 12 apple cultivars were evaluated on new and established cultivars. Fruit was also evaluated using five instrumental measurements from TA.XTplus Texture Analyzer, and three compositional determinations. The experiment was repeated for analysis and validation purposes. Principal component (PC) analysis revealed that 95.88% of the variation in the instrumental determinations could be explained by two components (PC 1 and PC 2); which were highly correlated with flesh firmness and skin strength, respectively. Four textural groups of apples were identified, and the accuracy of classification was established at 94.44% by using linear discriminant analysis. The predictive models that were developed between the sensory and instrumental-compositional data explained more than 85% of the variation in the data for hardness and crispness, while models for juiciness and skin toughness were more complex. The work should assist industry personnel to reduce time-consuming and costly sensory testing, yet have an appreciation of the textural traits as perceived by the consumer.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次