Materials Today Advances | |
A review of zinc-based battery from alkaline to acid | |
X. Wang1  H. Wang2  L. Tao2  H. Wan2  J. Duan3  N. Wang4  J. Zhang4  | |
[1] Hubei Key Laboratory of Ferro &Piezoelectric Materials and Devices, School of Microelectronics and Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China;Corresponding author.;;Hubei Key Laboratory of Ferro & | |
关键词: Electrolyte; Zinc-ion battery; Alkaline battery; Additive; Non-alkaline; | |
DOI : | |
来源: DOAJ |
【 摘 要 】
The demand for electrochemical energy storage devices has spawned a demand for high-performance advanced batteries. From a meaningful performance and cost perspective, zinc-based rechargeable batteries (ZBRBs) have become the most promising secondary batteries. Zinc can be directly used as a stable anode in aqueous energy storage, providing shuttle cations in the electrolyte, which is beneficial for future industrialization. This review looks back at the development of electrolyte systems for ZBRBs in recent years, ranging from traditional alkaline electrolytes to mild environment, and finally to a new generation of acidic environmental battery system. This article reviews the energy storage mechanisms of various electrode materials in different electrolytes of ZBRBs and focuses on the influence of electrolyte components on their performance. Electrolytes can be classified into aqueous (alkaline, neutral, and acid), organic, and gel electrolytes. Through comparative analysis, the mechanism and methods for the design and optimization of electrolyte performance are emphasized. Based on the premise of not sacrificing the existing advantages of safety and high capacity, several research directions that may overcome these challenges in the future are proposed.
【 授权许可】
Unknown