期刊论文详细信息
Materials
Discrete Element Mesoscale Modeling of Recycled Lump Concrete under Axial Compression
Bo Wu1  Yong Yu1 
[1] State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China;
关键词: recycled lump concrete;    discrete element modeling;    axial compression;    mechanical properties;    shape of lumps;    variability of mechanical performance;   
DOI  :  10.3390/ma12193140
来源: DOAJ
【 摘 要 】

In the past decade, directly reusing large pieces of coarsely crushed concrete (referred to as demolished concrete lumps or DCLs) with fresh concrete in new construction was demonstrated as an efficient technique for the recycling of waste concrete. Previous studies investigated the mechanical properties of recycled lump concrete (RLC) containing different sizes of DCLs; however, for actual application of this kind of concrete, little information is known about the influence of the spatial locations of DCLs and coarse aggregates on the concrete strength. Moreover, the mechanical responses of such a concrete containing various shapes of DCLs are also not well illustrated. To add knowledge related to these topics, two-dimensional mesoscale simulations of RLC containing DCLs under axial compression were performed using the discrete element method. The main variables of interest were the relative strength of the new and old concrete, the distribution of the lumps and other coarse aggregates, and the shape of the lumps. In addition, the differences in compression behavior between RLC and recycled aggregate concrete were also predicted. The numerical results indicate that the influence tendency of the spatial locations of DCLs and coarse aggregate pieces on the compressive stress−strain curves for RLC is similar to that of the locations of coarse aggregates for ordinary concrete. The strength variability of RLC is generally higher than that of ordinary concrete, regardless of the relative strength of the new and old concrete included; however, variability has no monotonic trend with an increase in the lump replacement ratio. The mechanical properties of RLC in compression are little influenced by the geometric shape of DCLs as long as the ratio of the length of their long axis to short axis is smaller than 2.0. The compressive strength and elastic modulus of RLC are always superior to those of recycled aggregate concrete designed with a conventional mixing method.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:4次