期刊论文详细信息
Applied Sciences
A Novel Anatomy Education Method Using a Spatial Reality Display Capable of Stereoscopic Imaging with the Naked Eye
Takeshi Oguchi1  Masahiro To2  Masato Matsuo2  Shinya Fuchida3  Katsuhiko Kimoto4  Iwao Hasegawa5  Tomoki Itamiya6  Hiromasa Kawana7 
[1] Department of Anatomy, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan;Department of Clinical Oral Anatomy, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan;Department of Education Planning, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan;Department of Fixed Prosthodontics, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan;Department of Forensic Medicine, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan;Department of Liberal Arts Education, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan;Department of Oral and Maxillofacial Implantology, School of Dentistry, Kanagawa Dental University, Yokosuka 238-8580, Japan;
关键词: X reality;    XR;    cross reality;    virtual reality;    augmented reality;    spatial reality;   
DOI  :  10.3390/app11167323
来源: DOAJ
【 摘 要 】

Several efforts have been made to use virtual reality (VR) and augmented reality (AR) for medical and dental education and surgical support. The current methods still require users to wear devices such as a head-mounted display (HMD) and smart glasses, which pose challenges in hygiene management and long-term use. Additionally, it is necessary to measure the user’s inter-pupillary distance and to reflect it in the device settings each time to accurately display 3D images. This setting is difficult for daily use. We developed and implemented a novel anatomy education method using a spatial reality display capable of stereoscopic viewing with the naked eye without an HMD or smart glasses. In this study, we developed two new applications: (1) a head and neck anatomy education application, which can display 3D-CG models of the skeleton and blood vessels of the head and neck region using 3D human body data available free of charge from public research institutes, and (2) a DICOM image autostereoscopic viewer, which can automatically convert 2D CT/MRI/CBCT image data into 3D-CG models. In total, 104 students at the School of Dentistry experienced and evaluated the system, and the results suggest its usefulness. A stereoscopic display without a head-mounted display is highly useful and promising for anatomy education.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次