Biotechnology & Biotechnological Equipment | |
Effects of ethephon on DNA methylation and gene expressions associated with shortened internodes in maize | |
Liang Dai1  Huijun Duan1  Xiuai Huo1  Yunting Liu1  Daxuan Yao1  Tinashe Zenda1  Songtao Liu1  | |
[1] Agricultural University of Hebei; | |
关键词: Ethephon; maize; MSAP; SCoT; cDNA-AFLP; differential expression; | |
DOI : 10.1080/13102818.2017.1386591 | |
来源: DOAJ |
【 摘 要 】
In this study, the molecular mechanism underlying ethephon-induced shortened internodes in maize was investigated using Zhengdan958 maize variety. The ethephon treatment was performed by spraying 225 mL/ha Ethephon 40% SL onto the foliage at the eight-expanded-leaves stage. The differentially expressed genes in the young internodes under ethephon treatment were identified through methylation-sensitive amplified fragment length polymorphism (MSAP), start codon targeted polymorphism (SCoT) and cDNA-amplified fragment length polymorphism (AFLP) analyses. MSAP results showed the methylation sites were widely distributed in both the ethephon-treated (at 27.8%) and control plants (30.1%). This suggested that ethephon treatment modified the methylation patterns; with 3.0% of the sites being hyper-methylated and 7.3% demethylated compared with the control. Based on SCoT analysis, 148 transcript derived fragments (TDFs) were obtained in the ethephon-treated plants. Among them, 38 were up-regulated (25.7%) and 47 down-regulated (31.8%). cDNA-AFLP analysis using 70 primer pairs identified 1635 TDFs in the ethephon-treated and the control plants. Of these, 600 and 564 TDFs were up- and down-regulated by the ethephon treatment, respectively. BLASTX analysis on 50 (randomly selected) differentially expressed TDFs divided them into several categories based on their putative biological functions: signal transduction (6%), resistance-related (14%), energy and metabolism (22%), transcription (4%), cell apoptosis (2%), unknown functional proteins (42%) and unknown genes (10%). Our results revealed that ethephon treatment could induce DNA methylation variation principally by increasing the demethylation tendency. This is suggested to play roles in stress-defence genes expression regulation and the differentially expressed genes could be associated with shortened internodes in maize.
【 授权许可】
Unknown