期刊论文详细信息
Polymers
Towards the Development of Novel Hybrid Composite Steel Pipes: Electrochemical Evaluation of Fiber-Reinforced Polymer Layered Steel against Corrosion
Elsadig Mahdi1  Elsadig Eltai1  Faysal Fayez Eliyan2  Fatima Ghassan Alabtah3  Marwan Khraisheh3 
[1] Department of Mechanical and Industrial Engineering, Qatar University, Doha 23874, Qatar;Engineering Technology Department, Community College of Qatar, Doha 23874, Qatar;Mechanical Engineering Program, Texas A&M University at Qatar, Doha 23874, Qatar;
关键词: fiber-reinforced polymer;    pipeline;    corrosion;    steel;    composite;   
DOI  :  10.3390/polym13213805
来源: DOAJ
【 摘 要 】

Corrosion remains one of the major and most costly challenges faced by the steel industry. Various fiber-reinforced polymer coating systems have been proposed to protect metallic piping distribution networks against corrosion. Despite increasing interest among scientific and industrial communities, there is only limited predictive capability for selecting the optimum composite system for a given corrosive condition. In this study, we present a comprehensive evaluation of the electrochemical behavior of two different fiber-reinforced polymer composite systems against the corrosion of carbon steel pipes under a wide range of acidic and corrosive solutions. The composites were made of glass and Kevlar fibers with an epoxy resin matrix and were subjected to corrosive solutions of 0.5 M NaCl, 0.5 M HCl, and 0.5 M H2SO4. The kinetics of the corrosion reactions were evaluated using potentiodynamic polarization (PDP) tests. In addition, electrochemical impedance spectroscopy (EIS) tests were carried out at open circuit potentials (OCPs). It was demonstrated that the glass fiber-reinforced polymer coating system offered the best protection against corrosion, with a high stability against deterioration when compared with epoxy and Kevlar fiber-reinforced polymer coating systems. Scanning electron microscopy images revealed cracks and deteriorated embedded fibers due to acid attack, sustained/assisted by the diffusion of the corrosion species.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次