期刊论文详细信息
Sustainability
Degradation of Organics and Change Concentration in Per-Fluorinated Compounds (PFCs) during Ozonation and UV/H2O2 Advanced Treatment of Tertiary-Treated Sewage
Ilho Kim1  Jai-yeop Lee1  Jesmin Akter1  Hyun-Ju Ha2  In Geol Yi2  Chang-Min Park2  Mok-Young Lee2  Da-Hye Hong2 
[1] Department of Civil and Environmental Engineering, University of Science and Technology, Daejeon 34113, Korea;Department of Water Environment Research, Seoul Metropolitan Government Research Institute of Public Health and Environment, Seoul 13818, Korea;
关键词: organic compound;    PFCs;    tertiary wastewater;    O3/UV/H2O2;   
DOI  :  10.3390/su14095597
来源: DOAJ
【 摘 要 】

This study aimed to investigate the effect of H2O2 addition, ozone feed rate, and UV addition on the change in the concentration of organics such as CODMn, CODCr, TOC, and PFCs in tertiary-treated effluent from a sewage treatment plant (STP) during the O3 and UV/H2O2 process. The degradation of organic pollutants from tertiary effluent is a significant challenge because biological treatment cannot degrade these recalcitrant pollutants. Therefore, the O3/UV/H2O2 process was an effective method for treating recalcitrant organics. Several batch tests were conducted to investigate the direct UV photolysis, UV/H2O2, and ozone-based advanced oxidation process to degrade CODMn, CODCr, TOC, and PFCs. The chemical oxygen demand (COD) and total organic carbon (TOC) with UV irradiation showed 95% and 50% removal efficiency percentages under optimal conditions (initial pH = 6.7, H2O2 dosage = 50 mg/L, ozone feed rate = 5.8 mg/L/min. Moreover, UV irradiation, with the addition of H2O2, and a sufficient dose of ozone, demonstrated the efficient removal of organic compounds by the indication of radical oxidation. (·OH) is the dominant mechanism. However, AOPs are not sufficient to fully treat the PFC compound; thus, additional procedures are required to degrade PFCs. In this study, the removal of organic recalcitrant contaminants and the change in added PFC concentration in tertiary-treated sewage were investigated by applying the ozone-based advanced oxidation process.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次