期刊论文详细信息
Boundary Value Problems
Arbitrary decays for a viscoelastic equation
关键词: Viscoelastic equation;    Kernel function;    Exponential decay;    Polynomial decay;   
DOI  :  
来源: DOAJ
【 摘 要 】

Abstract

In this paper, we consider the nonlinear viscoelastic equation u t ρ u t t - Δ u - Δ u t t + 0 t g ( t - s ) Δ u ( s ) d s + u p u = 0 , in a bounded domain with initial conditions and Dirichlet boundary conditions. We prove an arbitrary decay result for a class of kernel function g without setting the function g itself to be of exponential (polynomial) type, which is a necessary condition for the exponential (polynomial) decay of the solution energy for the viscoelastic problem. The key ingredient in the proof is based on the idea of Pata (Q Appl Math 64:499-513, 2006) and the work of Tatar (J Math Phys 52:013502, 2010), with necessary modification imposed by our problem.

Mathematical Subject Classification (2010): 35B35, 35B40, 35B60

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次