期刊论文详细信息
AI
Using Machine Learning and Feature Selection for Alfalfa Yield Prediction
JonathanM. Vance1  Ali Missaoui2  Frederick W. Maier3  KhaledM. Rasheed3  ChristopherD. Whitmire3  HendK. Rasheed3 
[1] Department of Computer Science, University of Georgia, 415 Boyd Graduate Studies, 200 D. W. Brooks Drive, Athens, GA 30602, USA;Department of Crop and Soil Sciences, Institute of Plant Breeding Genetics and Genomics, University of Georgia, 4317 Miller Plant Science, Athens, GA 30602, USA;Institute for Artificial Intelligence, University of Georgia, 515 Boyd Graduate Studies, 200 D. W. Brooks Drive, Athens, GA 30602, USA;
关键词: alfalfa;    cross validation;    feature selection;    machine learning;    regression;    yield prediction;   
DOI  :  10.3390/ai2010006
来源: DOAJ
【 摘 要 】

Predicting alfalfa biomass and crop yield for livestock feed is important to the daily lives of virtually everyone, and many features of data from this domain combined with corresponding weather data can be used to train machine learning models for yield prediction. In this work, we used yield data of different alfalfa varieties from multiple years in Kentucky and Georgia, and we compared the impact of different feature selection methods on machine learning (ML) models trained to predict alfalfa yield. Linear regression, regression trees, support vector machines, neural networks, Bayesian regression, and nearest neighbors were all developed with cross validation. The features used included weather data, historical yield data, and the sown date. The feature selection methods that were compared included a correlation-based method, the ReliefF method, and a wrapper method. We found that the best method was the correlation-based method, and the feature set it found consisted of the Julian day of the harvest, the number of days between the sown and harvest dates, cumulative solar radiation since the previous harvest, and cumulative rainfall since the previous harvest. Using these features, the k-nearest neighbor and random forest methods achieved an average R value over 0.95, and average mean absolute error less than 200 lbs./acre. Our top R2 of 0.90 beats a previous work’s best R2 of 0.87. Our primary contribution is the demonstration that ML, with feature selection, shows promise in predicting crop yields even on simple datasets with a handful of features, and that reporting accuracies in R and R2 offers an intuitive way to compare results among various crops.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次