期刊论文详细信息
Plants
Short-Term Response of Sasa Dwarf Bamboo to a Change of Soil Nitrogen Fertility in a Forest Ecosystem in Northern Hokkaido, Japan
Karibu Fukuzawa1  Tsunehiro Watanabe2  Hideaki Shibata2 
[1] Field Science Center for Northern Biosphere, Hokkaido University, 483 Otoineppu, Otoineppu, Hokkaido 098-2501, Japan;Field Science Center for Northern Biosphere, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan;
关键词: biomass;    litter decomposition;    nitrogen addition experiment;    nitrogen cycling;    understory plant;   
DOI  :  10.3390/plants5020019
来源: DOAJ
【 摘 要 】

In forest ecosystems, a change of soil nitrogen (N) cycling after disturbance is regulated by various factors. Sasa dwarf bamboo (hereafter referred to as Sasa) is an understory plant that grows thickly on the forest floor in northern Hokkaido, Japan. However, the ecosystem function of Sasa after disturbances in the soil N cycling is not fully understood. The purpose of this study was to determine the short-term response of Sasa to a change of soil N fertility. Biomass, litterfall, litter decomposition, soil N pool, and N leaching from soil were measured in control, and low- (5 g N m−2 year−1) and high-N (15 g N m−2 year−1) addition plots. Sasa immobilized much N as the soil N fertility increased. However, the leaf N concentration in aboveground biomass did not increase, suggesting that the N in leaves was maintained because of the increase of leaf biomass. As a result, the decomposition and mineralization rates of the produced litter before and after N addition were comparable among plots, even though the soil inorganic N fertility increased greatly. These results suggest that immediate response of Sasa to an increase of soil inorganic N mitigates the excess N leaching from soil.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次