期刊论文详细信息
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Edge metric dimension of some classes of circulant graphs
Ahsan Muhammad1  Zahid Zohaib1  Zafar Sohail1 
[1] Department of Mathematics, University of Management and Technology (UMT), LahorePakistan;
关键词: edge metric dimension;    edge metric generator;    basis;    resolving set;    circulant graphs;    primary 05c12;    secondary;   
DOI  :  10.2478/auom-2020-0032
来源: DOAJ
【 摘 要 】

Let G = (V (G), E(G)) be a connected graph and x, y ∈ V (G), d(x, y) = min{ length of x − y path } and for e ∈ E(G), d(x, e) = min{d(x, a), d(x, b)}, where e = ab. A vertex x distinguishes two edges e1 and e2, if d(e1, x) ≠ d(e2, x). Let WE = {w1, w2, . . ., wk} be an ordered set in V (G) and let e ∈ E(G). The representation r(e | WE) of e with respect to WE is the k-tuple (d(e, w1), d(e, w2), . . ., d(e, wk)). If distinct edges of G have distinct representation with respect to WE, then WE is called an edge metric generator for G. An edge metric generator of minimum cardinality is an edge metric basis for G, and its cardinality is called edge metric dimension of G, denoted by edim(G). The circulant graph Cn(1, m) has vertex set {v1, v2, . . ., vn} and edge set {vivi+1 : 1 ≤ i ≤ n−1}∪{vnv1}∪{vivi+m : 1 ≤ i ≤ n−m}∪{vn−m+ivi : 1 ≤ i ≤ m}. In this paper, it is shown that the edge metric dimension of circulant graphs Cn(1, 2) and Cn(1, 3) is constant.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次