期刊论文详细信息
Processes
Computational Molecular Modeling of Transport Processes in Nanoporous Membranes
CynthiaJ. Jameson1  KevinR. Hinkle1  Xiaoyu Wang2  Sohail Murad2  Xuehong Gu3 
[1] Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA;Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 China;
关键词: molecular simulation;    membrane separations;    ion-transport;   
DOI  :  10.3390/pr6080124
来源: DOAJ
【 摘 要 】

In this report we have discussed the important role of molecular modeling, especially the use of the molecular dynamics method, in investigating transport processes in nanoporous materials such as membranes. With the availability of high performance computers, molecular modeling can now be used to study rather complex systems at a fraction of the cost or time requirements of experimental studies. Molecular modeling techniques have the advantage of being able to access spatial and temporal resolution which are difficult to reach in experimental studies. For example, sub-Angstrom level spatial resolution is very accessible as is sub-femtosecond temporal resolution. Due to these advantages, simulation can play two important roles: Firstly because of the increased spatial and temporal resolution, it can help understand phenomena not well understood. As an example, we discuss the study of reverse osmosis processes. Before simulations were used it was thought the separation of water from salt was purely a coulombic phenomenon. However, by applying molecular simulation techniques, it was clearly demonstrated that the solvation of ions made the separation in effect a steric separation and it was the flux which was strongly affected by the coulombic interactions between water and the membrane surface. Additionally, because of their relatively low cost and quick turnaround (by using multiple processor systems now increasingly available) simulations can be a useful screening tool to identify membranes for a potential application. To this end, we have described our studies in determining the most suitable zeolite membrane for redox flow battery applications. As computing facilities become more widely available and new computational methods are developed, we believe molecular modeling will become a key tool in the study of transport processes in nanoporous materials.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次