Plant Methods | |
Carbon dioxide expanded liquid: an effective solvent for the extraction of quercetin from South African medicinal plants | |
František Švec1  Hana Kočová Vlčková1  Lukáš Kuda1  Lucie Nováková1  Veronika Pilařová1  Karel Doležal2  Manoj Kulkarni3  Johannes Van Staden3  Shubhpriya Gupta3  | |
[1] Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University;Department of Chemical Biology, Faculty of Science, Palacký University;Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal; | |
关键词: Quince fruit; Gas expanded liquid; Agapanthus praecox; Targeted analysis; High-resolution mass spectrometry; | |
DOI : 10.1186/s13007-022-00919-6 | |
来源: DOAJ |
【 摘 要 】
Abstract Background Quercetin is one of the most important bioflavonoids having positive effects on the biological processes and human health. Typically, it is extracted from plant matrices using conventional methods such as maceration, sonication, infusion, and Soxhlet extraction with high solvent consumption. Our study aimed to optimize the environmentally friendly carbon dioxide-based method for the extraction of quercetin from quince fruit with an emphasis on extraction yield, repeatability, and short extraction time. Results A two-step design of experiments was used for the optimization of the key parameters affecting physicochemical properties, including CO2/co-solvent ratio, co-solvent type, temperature, and pressure. Finally, gas expanded liquid combining CO2/ethanol/H2O in a ratio of 10/81/9 (v/v/v) provided the best extraction yield. Extraction temperature 66 °C and pressure 22.3 MPa were the most suitable conditions after careful optimization, although both parameters did not significantly affect the process. It was confirmed by experiments in various pressure and temperature conditions and statistical comparison of obtained data. The optimized extraction procedure at a flow rate of 3 mL/min took 30 min. The repeatability of the extraction method exhibited an RSD of 20.8%. Conclusions The optimized procedure enabled very fast extraction in 30 min using environmentally friendly solvents and it was successfully applied to 16 different plant samples, including 14 bulbs and 2 fruits from South Africa. The quercetin content in extracts was quantified using ultra-high performance liquid chromatography (UHPLC) with tandem mass spectrometry. UHPLC hyphenated with high-resolution mass spectrometry was used to confirm chemical identity of quercetin in the analyzed samples. We quantified quercetin in 11 samples of all 16 tested plants. The quercetin was found in Agapanthus praecox from the Amaryllidaceae family and its presence in this specie was reported for the first time. Graphical Abstract
【 授权许可】
Unknown